W Hill View Primary Academy Calculation Policy: UPPER KS2 (Key Stage 2)


KEY STAGE 2							
In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.							
Key language: decimal, column methods, exchanges square number, cube number	ge, partition, mental method, ten thousand, hundred the	housand, million, factor, multiple, prime number,					
 Addition and subtraction: Children build on their column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage. Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods. Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen. 	 Multiplication and division: Building on their understanding, children develop methods to multiply up to 4-digit numbers by single-digit and 2-digit numbers. Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10, 100 and 1,000. Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions. Multiplication and division of decimals are also introduced and refined in Year 6. 	 Fractions: Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them. Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic. Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: 50%, 25%, 10% and 1%. 					

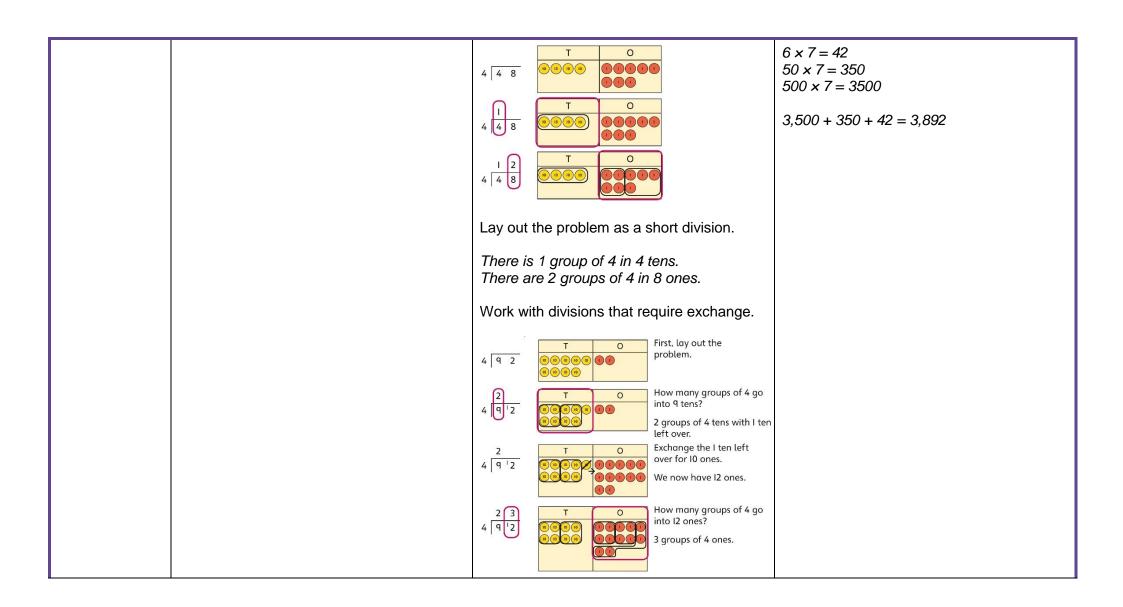
		Year 5	
	Concrete	Pictorial	Abstract
Year 5 Addition			
Column addition with whole numbers	Use place value equipment to represent additions. TTh Th H T O Add a row of counters onto the place value grid to show 15,735 + 4,012.	Represent additions, using place value equipment on a place value grid alongside written methods. Image: transformed base of the second seco	Use column addition, including exchanges.
Representing additions		Bar models represent addition of two or more numbers in the context of problem solving. $fiq.57q$ $fiq.57q$ $fig.57q$ $fig.57q$ $fig.57q$ $fig.57q$ $fig.57q$ $fig.57q$ $fig.57q$ $fig.57q$ $fig.57q$ $fig.725$ Jen $fig.600$ $fig.725$ Jen $fig.600$ $fig.725$ Jen $fig.600$ $fig.600$ $fig.6725$ Jen $fig.6725$ Jen $fig.670$ $fig.66650$ $fig.6650$ $fig.6650$ $fig.6650$ $fig.6650$ $fig.650$ <td>Use approximation to check whether answers are reasonable. $\boxed{\begin{array}{c cccccccccccccccccccccccccccccccccc$</td>	Use approximation to check whether answers are reasonable. $\boxed{\begin{array}{c cccccccccccccccccccccccccccccccccc$

Adding tenths	Link measure with addition of decimals. Two lengths of fencing are 0.6 m and 0.2 m. How long are they when added together? 0.6 m 0.2 m	Use a bar model with a number line to add tenths. $\begin{array}{cccccccccccccccccccccccccccccccccccc$	Understand the link with adding fractions. $\frac{6}{10} + \frac{2}{10} = \frac{8}{10}$ 6 tenths + 2 tenths = 8 tenths 0.6 + 0.2 = 0.8
Adding	Use place value equipment to represent	Use place value equipment on a place	Add using a column method, ensuring that
decimals using	additions.	value grid to represent additions.	children understand the link with place
column	Show 0.23 + 0.45 using place value	Represent exchange where necessary.	value.
addition	counters.	Image: strategy of the second	$\boxed{0 + Tth + Hth} \\ 0 + 2 + 3 \\ + + 0 + 4 + 5 \\ \hline 0 + 6 + 8 \\ \hline 1 + 0 + 4 + 5 \\ \hline 0 + 6 + 8 \\ \hline 1 + 0 + 4 + 5 \\ \hline 1 + 0 + 4 + 3 \\ \hline 1 + 0 + 4 + 3 \\ \hline 1 + 0 + 4 + 3 \\ \hline 1 + 0 + 7 + 0 \\ \hline 1 + 0 $

Checking strategies and representing subtractions	Bar models represent subtractions in problem contexts, including 'find the difference'. Athletics Stadium 75,450 Hockey Centre 42,300 Velodrome 15,735 ?	Children can explain the mistake made when the columns have not been ordered correctly. Use approximation to check calculations. $\hline \hline \\ \hline$
Choosing efficient methods		To subtract two large numbers that are close, children find the difference by counting on. 2,002 - 1,995 = ? 1,995 $2,000$ $2,002Use addition to check subtractions.I calculated 7,546 - 2,355 = 5,191.I will check using the inverse.$

Year 5			
Multiplication Understanding factors	Use cubes or counters to explore the meaning of 'square numbers'. 25 is a square number because it is made from 5 rows of 5. Use cubes to explore cube numbers. Use cubes to explore cube numbers. 8 is a cube number.	Use images to explore examples and non- examples of square numbers. $8 \times 8 = 64$ $8^2 = 64$ 12 is not a square number, because you cannot multiply a whole number by itself to make 12.	Understand the pattern of square numbers in the multiplication tables. Use a multiplication grid to circle each square number. Can children spot a pattern?

Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10, 100 and 1,000 by unitising. $4 \times 1 = 4 \text{ ones} = 4$	Understand the effect of repeated multiplication by 10. $7 \times 10 = 70$ $7 \times 1,000 = 70,000$	Understand how exchange relates to the digits when multiplying by 10, 100 and 1,000. $\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Multiplying by multiples of 10, 100 and 1,000	Use place value equipment to explore multiplying by unitising. 5 groups of 3 ones is 15 ones. 5 groups of 3 tens is 15 tens. So, I know that 5 groups of 3 thousands would be 15 thousands.	Use place value equipment to represent how to multiply by multiples of 10, 100 and 1,000. $4 \times 3 = 12$ $4 \times 300 = 1,200$ $6 \times 4 = 24$ $6 \times 400 = 2,400$	Use known facts and unitising to multiply. 5 × 4 = 20 5 × 40 = 200 5 × 400 = 2,000 5 × 4,000 - 20,000 5,000 × 4 = 20,000


Multiplying up to 4-digit numbers by a single digit	Explore how to use partitioning to multiply efficiently. $8 \times 17 = ?$ $8 \times 10 = 80$ $8 \times 10 = 80$ $8 \times 7 = 56$ 80 + 56 = 136 So, $8 \times 17 = 136$		T 000s.	1s, then 10		5 U:	100 100 × 5 = 500	odel and then a 60 $60 \times 5 = 300$ nultiplication, in ages. H T O $4 I 7$ 8 $1 3 6$ 5	3 3 × 5 = 15
Multiplying 2- digit numbers by 2-digit numbers	Partition one number into 10s and 1s, then add the parts. $23 \times 15 = ?$ $10 \times 15 = 150$ $10 \times 15 = 150$ $10 \times 15 = 150$ $\frac{H T O}{1 5 0}$ $1 5 0$	Use an area m $28 \times 15 = ?$ 10 m $20 \times 10 = 2$ 5 m $20 \times 5 = 10$ $28 \times 15 = 420$	200 m ² 8	8 m × 10 = 80 m ²	rts. H T O 2 0 0 1 0 0 8 0 + 4 0 4 2 0 1			ltiplication, ens	

Multiplying up to 4-digits by 2-digits	Use the area model then add the parts. 10 40 3 10 100 × 10 = 1,000 40 × 10 = 400 3 × 10 = 30 2 100 × 2 = 200 40 × 2 = 80 3 × 2 = 6 Th H T O 1 0 0 0 4 0 0 2 0 0 8 0 + 6 1 7 1 6 1 0 1 43 × 12 = 1,716	Use column multiplication, ensuring understanding of place value at each stage. $ \frac{Th}{14} + T 0 \\ \hline 143 \times 1 2 \\ \hline 143 \times 1 2 \\ \hline 143 \times 10 \\ \hline 143 \times 12 \\ \hline $ Progress to include examples that require multiple exchanges as understanding, confidence and fluency build. 1,274 × 32 = ?
		First multiply 1,274 by 2. TTh H T O I I Z T O X I Z T A X I Z
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		Then multiply 1,274 by 30. TTh Th H T O I I Z 7 4 × I I 3 2 I Z 5 4 8 1,274 × 2 I Z I I I I I I I Z 5 4 8 1,274 × 2 I

Multiplying decimals by 10, 100 and 1,000	Use place value equipment to explore and understand the exchange of 10 tenths, 10 hundredths or 10 thousandths.	Represent multiplication by 10 as exchange on a place value grid. i) $0.14 \times 10 = $	Understand how this exchange is represented on a place value chart. Th H T O Tth 2.5 x 10 = 25 2.5 x 100 = 250 2.5 x 1,000 = 2,500 Th H T O Tth 2.5 x 0 = 250 2.5 x 0 = 250 2.5 x 0 = 2,500 Th H T O Tth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Year 5 Division			
Understanding factors and prime numbers	Use equipment to explore the factors of a given number. 24 ÷ 3 = 8 24 ÷ 8 = 3 8 and 3 are factors of 24 because they divide 24 exactly. 24 ÷ 5 = 4 remainder 4.	Understand that prime numbers are numbers with exactly two factors. $13 \div 1 = 13$ $13 \div 2 = 6 r 1$ $13 \div 4 = 4 r 1$ 1 and 13 are the only factors of 13. 13 is a prime number.	Understand how to recognise prime and composite numbers. <i>I know that 31 is a prime number because it</i> <i>can be divided by only 1 and itself without</i> <i>leaving a remainder.</i> <i>I know that 33 is not a prime number as it</i> <i>can be divided by 1, 3, 11 and 33.</i> <i>I know that 1 is not a prime number, as it</i> <i>has only 1 factor.</i>
	5 is not a factor of 24 because there is a remainder.		

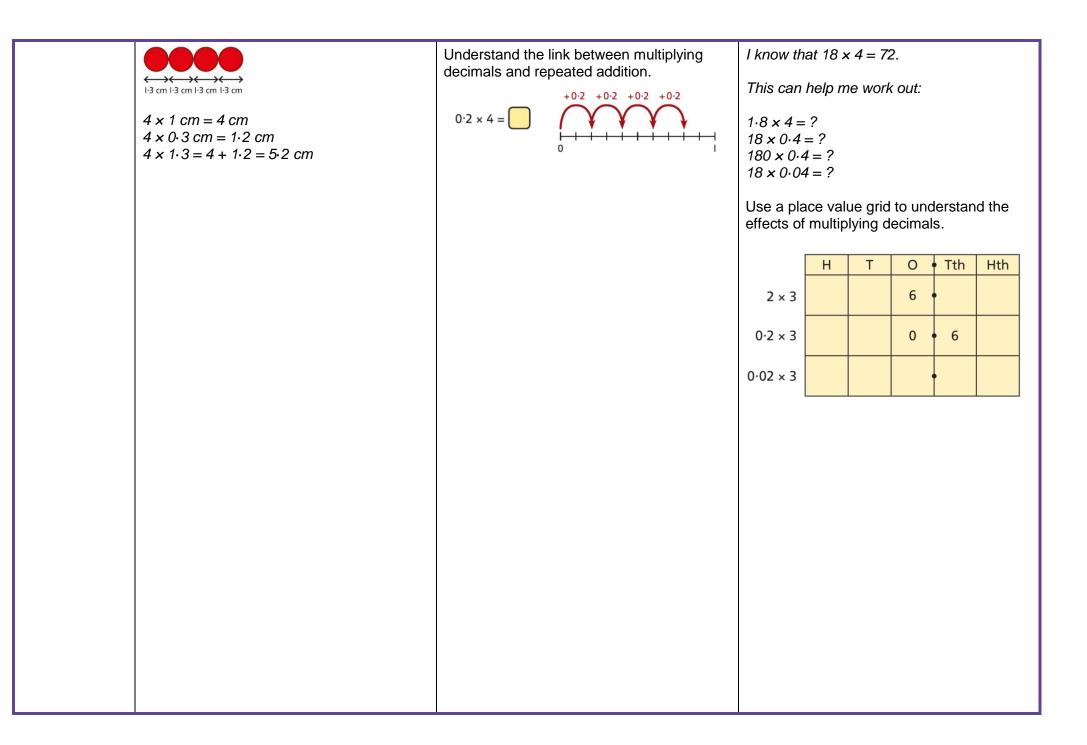
Understanding inverse operations and the link with multiplication, grouping and sharing	Use equipment to group and share and to explore the calculations that are present. <i>I have 28 counters.</i> <i>I made 7 groups of 4. There are 28 in total.</i> <i>I have 28 in total. I shared them equally into</i> <i>7 groups. There are 4 in each group.</i> <i>I have 28 in total. I made groups of 4. There</i> <i>are 7 equal groups.</i>	Represent multiplicative relationships and explore the families of division facts. $60 \div 4 = 15$ $60 \div 15 = 4$	Represent the different multiplicative relationships to solve problems requiring inverse operations. $12 \div 3 = \bigcirc$ $12 \div \bigcirc = 3$ $2 \div \bigcirc = 3$ $3 \Rightarrow 12$ $3 \Rightarrow 12$ Understand missing number problems for division calculations and know how to solve them using inverse operations. $22 \div ? = 2$ $22 \div 2 = ?$? $\div 2 = 22$? $\div 22 = 2$
Dividing whole numbers by 10, 100 and 1,000	Use place value equipment to support unitising for division. $4,000 \div 1,000$ $4,000 \times 1,000$ 4,000 is 4 thousands. $4 \times 1,000 = 4,000$ So, $4,000 \div 1,000 = 4$	Use a bar model to support dividing by unitising. $380 \div 10 = 38$ 2 2 2 2 2 2 2 2 2 2	Understand how and why the digits change on a place value grid when dividing by 10, 100 or 1,000. $\boxed{\begin{array}{c c c c c }\hline Th & H & T & 0\\\hline 3 & 2 & 0 & 0\\\hline \end{array}}$ 3,200 ÷ 100 = ? 3,200 is 3 thousands and 2 hundreds. 200 ÷ 100 = 2 3,000 ÷ 100 = 30 3,200 ÷ 100 = 32\\\hline So, the digits will move two places to the right.

Dividing by multiples of 10, 100 and 1,000	Use place value equipment to represent known facts and unitising.	Represent related facts with place value equipment when dividing by unitising.	Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check. $3,000 \div 5 = 600$ $3,000 \div 500 = 6$ $5 \times 600 = 3,000$ $50 \times 60 = 3,000$ $500 \times 6 = 3,000$
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2 = ?$ There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones. $264 \div 2 = 134$	 1200 ÷ 400 = 3 Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting. 	Use short division for up to 4-digit numbers divided by a single digit. $ \begin{array}{r} \hline 0 & 5 & 5 & 6 \\ 7 & 3 & ^38 & ^39 & ^42 \\ \hline 3 & 8 & ^39 & ^42 \\ \hline 3,892 \div 7 = 556 \\ Use multiplication to check. \\ 556 \times 7 = ? \end{array} $

Understanding remainders	Understand remainders using concrete versions of a problem. 80 cakes divided into trays of 6. 80 cakes in total. They make 13 groups of 6, with 2 remaining.	Use short division and understand remainders as the last remaining 1s. $\begin{bmatrix} 1 \\ 8 \\ 0 \end{bmatrix} \xrightarrow{T} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	In problem solving contexts, represent divisions including remainders with a bar model. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Dividing decimals by 10, 100 and 1,000	Understand division by 10 using exchange. 2 ones are 20 tenths. 20 tenths divided by 10 is 2 tenths.	Represent division using exchange on a place value grid. T O Tth Hth T O Tth Hth T O O O O O O O O O O O O O O O O O O O	Understand the movement of digits on a place value grid. $\begin{array}{r} \hline 0 & Tth & Hth & Thth \\ \hline 0 & 8 & 5 \\ \hline 0 & 90 & 8 & 5 \\ \hline 0 & 90 & 8 & 5 \\ \hline 0 & 90 & 8 & 5 \\ \hline 0 & 0 & 8 & 5 \\ \hline 0 & 0 & 8 & 5 \\ \hline 8 \cdot 5 \div 100 = 0 \cdot 085 \end{array}$

Understanding the relationship between fractions and division	Use sharing to explore the link between fractions and division. <i>1 whole shared between 3 people.</i> <i>Each person receives one-third.</i>	Use a bar model and other fraction representations to show the link between fractions and division. $I \div 3 = \frac{1}{3}$	Use the link between division and fractions to calculate divisions. $5 \div 4 = \frac{5}{4} = 1\frac{1}{4}$ $11 \div 4 = \frac{11}{4} = 2\frac{3}{4}$

		Year 6	
	Concrete	Pictorial	Abstract
Year 6 Addition			
Comparing and selecting efficient methods	Represent 7-digit numbers on a place value grid and use this to support thinking and mental methods.	Discuss similarities and differences between methods, and choose efficient methods based on the specific calculation. Compare written and mental methods alongside place value representations.	Use column addition where mental methods are not efficient. Recognise common errors with column addition. $17,877 + 4,012 = ?$ $\boxed{TTh Th H T 0}$ $\boxed{TTh Th H T 0}$ $\boxed{TTh Th H T 0}$ $\boxed{1 7 8 7 7}$
		40,365 3,572 + 3 5 7 2 3 3 40,365	+ 4 0 1 2 5 7 9 9 7 1 1 1 1 1
		Use bar model and number line representations to model addition in problem-solving and measure contexts. $\underbrace{+1 \text{ hour}}_{12:05} \underbrace{+3 \text{ minutes}}_{13:05} \underbrace{+1 \text{ minutes}}_{13:13}$	Which method has been completed accurately? What mistake has been made? Column methods are also used for decimal additions where mental methods are not efficient. Image: the text of the text of the text of tex of tex of text of text of text


Selecting mental methods for larger numbers where appropriate	Represent 7-digit numbers on a place value grid and use this to support thinking and mental methods. 2,411,301 + 500,000 = ? This would be 5 more counters in the HTh place. So, the total is 2,911,301. 2,411,301 + 500,000 = 2,911,301	Use a bar model to support thinking in addition problems. 257,000 + 99,000 = ? 100,000 I added 100 thousands then subtracted 1 thousand. 257 thousands + 100 thousands = 357 thousands 257,000 + 100,000 = 357,000 357,000 - 1,000 = 356,000 So, 257,000 + 99,000 = 356,000	Use place value and unitising to support mental calculations with larger numbers. 195,000 + 6,000 = ? 195 + 5 + 1 = 201 195 thousands + 6 thousands = 201 thousands So, 195,000 + 6,000 = 201,000
Understanding order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results. $3 \times 5 - 2 = ?$	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations. 16×4 cob 444444444444444444 trailer 666666666666666666666666666666666666	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $4 + 6 \times 16$ 4 + 96 = 100 $(4 + 6) \times 16$ $10 \times 16 = 160$

Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations. 2.679 $\hline 1$ 7 534 $\hline 1$ $\hline 1$ $\hline 1$ $\hline 1$ $\hline 1$ $\hline 7$ $\hline 9$ $\hline 2$ 6 7 9 $\hline 2$ 6 7 7 7 7 7 7 7 7 7 7	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. Th H T O 2 2 6 8 7 5 1 8 1 7 2 - 8 7 5 1 8 7 5 1 8 1 7 2 - 8 7 5 1 8 1 7 2 - 8 7 5 1 8 7 5 1 8 1 7 2 - 9 6 4 0 1 0 3 2 0 2 - 9 6 4 0 1 0 3 2 0 2 - 9 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Subtracting mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. 950,000 - 150,000 That is 950 thousands - 150 thousands 950 $150 \leftarrow 800$ So, the difference is 800 thousands. 950,000 - 150,000 = 800,000	Subtract efficiently from powers of 10. 10,000 - 500 = ?
Year 6 Multiplication			
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Use place value equipment to compare methods. Method I 3 2 5 5 3 2 2 5 3 2 2 5 3 2 2 5 4 3 2 2 5 1 2 9 0 0 1 1 1 1 Method 2 $4 \times 3,000 + 4 \times 200 + 4 \times 20 + 4 \times 5$ 2,000 + 800 + 80 + 80 + 20 = 12,000	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications. Method 3 $3,000 \ 200 \ 20 \ 5 \ 4 \ 12,000 \ 800 \ 80 \ 20 \ 1 \ 2 \ 4 \ 1 \ 2 \ 4 \ 1 \ 2 \ 4 \ 1 \ 2 \ 4 \ 1 \ 2 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5$

Multiplying up to a 4-digit number by a		Use an area model alongside written multiplication. 200 30 5	Use compact column multiplication with understanding of place value at all stages.
2-digit number		20 4,000 600 100	2 3 5
		200 30 5	x 2 1
		4,200 + 630 + 105 = 4,935	
		x 2 I	$4 7_{\chi} 0 0$ 20 × 235
		5 I×5	4 9 3 5 21 × 235
		3 0 I × 30	
		2 0 0 1×200	
		I 0 0 20 × 5 6 0 0 20 × 30	
		4 0 0 0 20 × 30	
		4 9 3 5 21 × 235	
Using knowledge of factors and partitions to compare methods for multiplications	Use equipment to understand square numbers and cube numbers. $5 \times 5 = 5^2 = 25$ $5 \times 5 \times 5 = 5^3 = 25 \times 5 = 125$	Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately.	Use a known fact to generate families of related facts. 170×11 170×11 170×11 170×12 170×12 17×10 Use factors to calculate efficiently. 15×16 $= 3 \times 5 \times 2 \times 8$ $= 3 \times 8 \times 2 \times 5$ $= 24 \times 10$ $= 240$

Multiplying by 10, 100 and 1,000	Use place value equipment to explore exchange in decimal multiplication. $0.3 \times 10 = ?$ 0.3 is 3 tenths. $10 \times 3 \text{ tenths are } 30 \text{ tenths}.$ 30 tenths are equivalent to 3 ones. $\boxed{10 \times 10 \times 10^{-1} \text{ th}}$ Represent 0.3. $\boxed{10 \times 10^{-1} \text{ th}}$ $\boxed{10 \times 10^{-1} \text{ th}$	Understand how the exchange affects decimal numbers on a place value grid. $T \qquad 0 \qquad $	Use knowledge of multiplying by 10, 100 and 1,000 to multiply by multiples of 10, 100 and 1,000. $8 \times 100 = 800$ $8 \times 300 = 800 \times 3$ = 2,400 $2.5 \times 10 = 25$ $2.5 \times 20 = 2.5 \times 10 \times 2$ = 50
Multiplying decimals	Explore decimal multiplications using place value equipment and in the context of measures.	Represent calculations on a place value grid. $6 \times 3 = 18$ $6 \times 0.3 = 1.8$	Use known facts to multiply decimals. $4 \times 3 = 12$ $4 \times 0.3 = 1.2$ $4 \times 0.03 = 0.12$ $20 \times 5 = 100$ $20 \times 0.5 = 10$ $20 \times 0.05 = 1$ Find families of facts from a known multiplication.

Year 6 Division			
Understanding factors	Use equipment to explore different factors of a number. 24 ÷ 4 = 6	Recognise prime numbers as numbers having exactly two factors. Understand the link with division and remainders.	Recognise and know primes up to 100. Understand that 2 is the only even prime, and that 1 is not a prime number.
Dividing by a single digit	Use equipment to make groups from a total. There are 78 in total. There are 6 groups of 13. There are 13 groups of 6.	H T O Groups of 6 are in I hundred? $H T O Groups of 6 are in I hundred?$ $H T O Groups of 6 are in I stens?$ $O 2 O 2 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0$	Use short division to divide by a single digit.

			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Dividing by a 2-digit number using factors	Understand that division by factors can be used when dividing by a number that is not prime.	Use factors and repeated division. $1,260 \div 14 = ?$ 1.260 $1,260 \div 2 = 630$ $630 \div 7 = 90$ $1,260 \div 14 = 90$	Use factors and repeated division where appropriate. 2,100 \div 12 = ? 2,100 \rightarrow $\begin{pmatrix} \div 2 \\ 2 \\ - \\ - \\ - \\ 2,100 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$
Dividing by a 2-digit number using long division	Use equipment to build numbers from groups.	Use an area model alongside written division to model the process. $377 \div 13 = ?$ $\begin{array}{c} ? \\ 3 \\ \hline 3 \\ \hline 13 \\ \hline 30 \\ \hline 247 \\ \hline 13 \\ \hline 1$	Use long division where factors are not useful (for example, when dividing by a 2-digit prime number). Write the required multiples to support the division process. $377 \div 13 = ?$ $\downarrow \qquad \qquad$

	$\boxed{\begin{array}{c cccc} 2 & q \\ \hline 13 & 3 & 7 & 7 \\ \hline - & 1 & 3 & 0 \\ \hline 2 & 4 & 7 \\ \hline - & 1 & 3 & 0 \\ \hline 1 & 7 & 7 \\ \hline - & 1 & 1 \\ \hline - & 1 & 7 \\ \hline - & 1 & 1 \\ \hline - & 1 \\ \hline - & 1 \\ \hline - & 1 & 1 \\ \hline - &$
--	---

Dividing by 10, 100 and 1,000	Use place value equipment to explore division as exchange.	Represent division to show the relationship with multiplication. Understand the effect of dividing by 10, 100 and 1,000 on the digits on a place value grid. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Use knowledge of factors to divide by multiples of 10, 100 and 1,000. $40 \div 50 = 10$ $40 \rightarrow \div 10 \rightarrow \div 5 \rightarrow ?$ $40 \rightarrow \div 5 \rightarrow \div 10 \rightarrow ?$ $40 \div 5 = 8$ $8 \div 10 = 0.8$ So, $40 \div 50 = 0.8$
Dividing decimals	Use place value equipment to explore division of decimals.	Use a bar model to represent divisions. $\begin{array}{c c} \hline 0.8\\ \hline ? & ? & ? & ?\\ 4 \times 2 = 8 & 8 \div 4 = 2\\ \text{So, } 4 \times 0.2 = 0.8 & 0.8 \div 4 = 0.2\\ \end{array}$	Use short division to divide decimals with up to 2 decimal places.